Odd Perfect Numbers Not Divisible by 3 Are Divisible by at Least Ten Distinct Primes

By Masao Kishore

Abstract

Hagis and McDaniel have shown that the largest prime factor of an odd perfect number N is at least 100111, and Pomerance has shown that the second largest prime factor is at least 139 . Using these facts together with the method we develop, we show that if $3 \nmid N, N$ is divisible by at least ten distinct primes.

1. Introduction. A positive integer N is called perfect if $\sigma(N)=2 N, \sigma(N)$ being the sum of positive divisors of N. No odd perfect (OP) numbers are known; however, it has been proved that if N is OP and $\omega(N)$ denotes the number of distinct prime factors of N, then $\omega(N) \geqslant 5$ by Sylvester (1888), Dickson (1913) and Kanold (1949); $\omega(N) \geqslant 6$ by Gradstein (1925), Kühnel (1949) and Weber (1951); $\omega(N) \geqslant 7$ by Pomerance (1972, [1]) and Robbins (1972); $\omega(N) \geqslant 8$ by Hagis (1975, [3]); and that if N is OP and $3 \nmid N$, then $\omega(N) \geqslant 8$ by Sylvester (1888), and $\omega(N) \geqslant 9$ by Kanold (1949, [6]). Also, it has been proved that if N is OP, then $N>10^{200}$ by Buxton and Elmore (1976, [5]), the largest prime factor of $N>100110$ by Hagis and McDaniel (1975, [4]), and the second largest prime factor of $N \geqslant 139$ by Pomerance (1975, [2]).

In this paper we prove
Theorem. If N is $O P$ and $3 \nmid N, \omega(N) \geqslant 10$.
2. Preliminary results. Throughout this paper let

$$
N=\prod_{i=1}^{r} p_{i}^{a_{i}}
$$

where $p_{1}<p_{2}<\cdots<p_{r}$ are odd primes and a_{1}, \ldots, a_{r} are positive integers. We call $p_{i}^{a_{i}}$ a component of N and write $V_{p_{i}}(N)$ for a_{i}.

Euler proved that if N is OP, then for some $j, p_{j} \equiv a_{j} \equiv 1$ (4) and for $i \neq j$, $a_{i} \equiv 0$ (2). p_{j} is called the special prime denoted by Π.

Lemma 1. Suppose N is $O P, 3 \nmid N$, and p^{a} is a component of N. If $p \equiv 2$ (3), then $p \neq \Pi$, and if $p \equiv 1$ (3), then $a \neq 2$ (3).

Proof. If $p \equiv 2$ (3) and $p=\Pi$, then $\sigma\left(p^{a}\right) \equiv 0(3)$ because a is odd, while if p $\equiv 1(3)$ and $a \equiv 2(3)$, then $\sigma\left(p^{a}\right) \equiv 0(3)$, both of which contradict the fact that $3 \nmid$ N. Q.E.D.

From Euler's Theorem and Lemma 1 we have
Corollary 1. Suppose N is $O P, 3 \nmid N$, and p^{a} is a component of N. If $p \equiv$ 1 (4) and $p \equiv 1$ (3), then $a=1,4,6,9,10,12, \ldots$; if $p \equiv 1$ (4) and $p \equiv 2$ (3),
then $a=2,4,6,8,10,12, \ldots$; if $p \not \equiv 1$ (4) and $p \equiv 1$ (3), then $a=4,6,10,12$, \ldots if $p \not \equiv 1$ (4) and $p \equiv 2$ (3), then $a=2,4,6,8,10,12, \ldots$.

We are interested in finding $p_{i}^{a_{i}}$,s for which

$$
\prod_{i=1}^{r} S\left(p_{i}^{a_{i}}\right)=2, \quad \text { where } S\left(p^{a}\right)=\sigma\left(p^{a}\right) / p^{a}
$$

Since the accuracy of the computer is limited, we use the inequality

$$
\begin{equation*}
0.693147180<\log 2=\sum_{i=1}^{r} \log S\left(p_{i}^{a_{i}}\right)<0.693147181 \tag{1}
\end{equation*}
$$

With nine-digit figures we have sufficient accuracy, and with log we can easily control computational errors involved.

Suppose N is OP, $3 \nmid N$, and p^{a} is a component of N. We define
$a(p)=$ minimum $\{b \mid b>1$ is an allowable power of p as determined by Corollary 1 and $\left.p^{b+1}>10^{9}\right\}$
and

$$
L\left(p^{a}\right)= \begin{cases}{\left[10^{9} \log S\left(p^{a}\right)\right] 10^{-9}} & \text { if } a<a(p) \\ {\left[10^{9} \log \frac{p}{p-1}\right] 10^{-9}} & \text { if } a \geqslant a(p)\end{cases}
$$

where [] is the greatest integer function.
We note that if p and q are odd primes with $p<q$, then for any positive integers a and b

$$
S\left(q^{a}\right)<\frac{q}{q-1}<\frac{p+1}{p} \leqslant S\left(p^{b}\right)
$$

and so $L\left(q^{a}\right) \leqslant L\left(p^{b}\right)$.
Lemma 2. Suppose

$$
N=\prod_{i=1}^{r} p_{i}^{a_{i}}
$$

is $O P$ and $3 \nmid N$. Then

$$
\begin{equation*}
S_{r}<\sum_{i=1}^{r} L\left(p_{i}^{b_{i}}\right)<T_{r} \tag{2}
\end{equation*}
$$

where $S_{r}=0.693147180-r 10^{-9}, T_{r}=0.693147181+r 10^{-9}, b_{i}=a_{i}$ if $a_{i}<$ $a\left(p_{i}\right)$, and $b_{i}=a\left(p_{i}\right)$ if $a_{i} \geqslant a\left(p_{i}\right)$.

Proof. Since N is OP, (1) holds. Suppose p^{a} is a component of N. If $a<a(p)$, then

$$
\left|\log S\left(p^{a}\right)-L\left(p^{a}\right)\right|<10^{-9}
$$

If $a \geqslant a(p)$, then

$$
\begin{aligned}
10^{-9} & \geqslant \log \frac{p}{p-1}-L\left(p^{a}\right)>\log S\left(p^{a}\right)-L\left(p^{a(p)}\right) \\
& \geqslant \log \frac{p^{a+1}-1}{p^{a+1}-p^{a}}-\log \frac{p}{p-1}=\log \left(1-\frac{1}{p^{a+1}}\right)=-\sum_{i=1}^{\infty} \frac{1}{i\left(p^{a+1}\right)^{i}} \\
& >-\sum_{i=1}^{\infty} \frac{1}{\left(p^{a+1}\right)^{i}}=\frac{-1}{p^{a+1}-1} \geqslant-10^{-9},
\end{aligned}
$$

and so

$$
\left|\log S\left(p^{a}\right)-L\left(p^{a(p)}\right)\right|<10^{-9}
$$

Hence,

$$
\begin{equation*}
\left|\sum_{i=1}^{r} \log S\left(p_{i}^{a_{i}}\right)-\sum_{i=1}^{r} L\left(p_{i}^{b_{i}}\right)\right|<r 10^{-9} \tag{3}
\end{equation*}
$$

and (2) follows from (1) and (3). Q.E.D.
We also need the following lemmas, which were proved in [1, pp. 269-271]:
Lemma 3. If q is a prime for which $q-1$ is a power of $2, N$ is $O P$, and if p^{a} is a component of N, then

$$
V_{q}\left(\sigma\left(p^{a}\right)\right)= \begin{cases}V_{q}(a+1) & \text { if } p \equiv 1(q) \\ V_{q}(p+1)+V_{q}(a+1) & \text { if } p \equiv-1(q) \text { and } p=\Pi \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 4. If N is $O P, p^{a}$ is a component of N, and if q is a prime and $q^{b} \mid a+1$, then N is divisible by at least b distinct primes $\equiv 1(q)$ other than p.

Lemma 5. If n is $O P, 17^{a}$ is a component of N, and if $17^{a} \nmid \Pi+1$, then N is divisible by at least two primes $\equiv 1$ (17).
3. Proof of the Theorem. In this section, we shall prove that if $3 \nmid N$ and $\omega(N)=9$, then N is not OP.

Lemma 6. If N is $O P, 3 \nmid N$, and if $\omega(N)=9$, then

$$
\begin{gathered}
p_{1}=5, \quad p_{2}=7, \quad p_{3}=11, \quad p_{4}=13, p_{5} \leqslant 19, \quad p_{6} \leqslant 23, \quad p_{7} \leqslant 53, \\
p_{8} \geqslant 139 \text { and } p_{9}>100110 .
\end{gathered}
$$

Proof. By [4] $p_{9}>100110$, and by [2] $p_{8} \geqslant 139$. Others follow from

$$
\begin{aligned}
& \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{17}{16} \frac{19}{18} \frac{23}{22} \frac{29}{28} \frac{139}{138} \frac{100111}{100110}<2 \\
& \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{23}{22} \frac{29}{28} \frac{31}{30} \frac{139}{138} \frac{100111}{100110}<2 \\
& \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{29}{28} \frac{31}{30} \frac{139}{138} \frac{100111}{100110}<2
\end{aligned}
$$

and

$$
\frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{19}{18} \frac{59}{58} \frac{139}{138} \frac{100111}{100110}<2 . \text { Q.E.D. }
$$

Lemma 7. $p_{5}=17$ in Lemma 6.
Proof. Suppose $p_{5}=19$. Then $p_{6}=23, p_{7}=29$ and $p_{8}=139$ because

$$
\frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{19}{18} \frac{23}{22} \frac{31}{30} \frac{139}{138} \frac{100111}{100110}<2
$$

and

$$
\frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{19}{18} \frac{23}{22} \frac{29}{28} \frac{149}{148} \frac{100111}{100110}<2
$$

Hence

$$
N=5^{a_{1}} 7^{a_{2}} 11^{a_{3}} 13^{a_{4}} 19^{a_{5}} 23^{a_{6}} 29^{a_{7}} 139^{a^{8}} p_{9}^{a_{9}}
$$

Since

$$
\frac{5}{4} \frac{7}{6} S\left(11^{2}\right) \frac{13}{12} \frac{19}{18} \frac{23}{22} \frac{29}{28} \frac{139}{138} \frac{100111}{100110}<2
$$

and

$$
\frac{5}{4} \frac{7}{6} \frac{11}{10} S\left(13^{1}\right) \frac{19}{18} \frac{23}{22} \frac{29}{28} \frac{139}{138} \frac{100111}{100110}<2
$$

$a_{3} \neq 2$ and $a_{4} \neq 1$. Also, $a_{2}, a_{4}, a_{5}, a_{8} \neq 2$ by Corollary 1 . Since every odd prime factor of $\sigma\left(p_{i}^{a_{i}}\right)$ is a factor of $N, a_{1}, a_{6}, a_{7} \neq 2$ and $a_{1}, a_{2} \neq 4$ because $31 \mid \sigma\left(5^{2}\right)$, $71\left|\sigma\left(5^{4}\right), 2801\right| \sigma\left(7^{4}\right), 79 \mid \sigma\left(23^{2}\right)$ and $67 \mid \sigma\left(29^{2}\right)$. Hence for $1 \leqslant i \leqslant 2, a_{i} \geqslant 6$ and for $3 \leqslant i \leqslant 8, a_{i} \geqslant 4$. Then N is not OP because

$$
S(N)>\prod_{i=1}^{8} S\left(p_{i}^{a_{i}}\right)>2 . \quad \text { Q.E.D. }
$$

Lemma 8. $17^{a^{5}} \mid \Pi+1$ and $\Pi>100110$ in Lemma 6.
Proof. Suppose $17^{a^{5}} \nmid \Pi+1$. Since $p_{i} \not \equiv \pm 1$ (17) for $1 \leqslant i \leqslant 7, p_{8} \equiv p_{9} \equiv$ 1 (17) by Lemma 5. If $17^{2} \mid \sigma\left(p_{j}^{a_{j}}\right)$ for $j=8$ or 9 , then by Lemma $3,17^{2} \mid a_{j}+1$, and by Lemma $4 N$ would be divisible by at least two primes $\equiv 1$ (17) other than p_{j}. Hence $17^{2} \nmid \sigma\left(p_{j}^{a_{j}}\right)$. Since $17 \nmid \sigma\left(p_{i}^{a_{i}}\right)$ for $1 \leqslant i \leqslant 7$, we conclude that $a_{5}=2$, $17 \mid \sigma\left(p_{8}^{a_{8}}\right)$ and $17 \mid \sigma\left(p_{9}^{a_{9}}\right)$. Then $p_{8}=\sigma\left(17^{2}\right)=307$, and for $j=8,9, a_{j}=16, p_{j} \neq$ $\Pi, 5 \nmid \sigma\left(p_{j}^{a_{j}}\right)$, and so for some $1 \leqslant i \leqslant 7,5 \mid \sigma\left(p_{i}^{a_{i}}\right)$. By Lemma 3 and Corollary $1, p_{i}$ $=11,31$, or 41 , and $\sigma\left(p_{i}^{4}\right) \mid \sigma\left(p_{i}^{a_{i}}\right)$ because $5 \mid a_{i}+1$; however, $3221\left|\sigma\left(11^{4}\right), 17351\right|$ $\sigma\left(31^{4}\right), 579281 \mid \sigma\left(41^{4}\right)$, and none of these primes $\equiv 1(17)$. Hence $p_{i} \neq 11,31,41$, a contradiction, and $17^{a_{5}} \mid \Pi+1$.

If $a_{5} \geqslant 4, \Pi \geqslant 2 \cdot 17^{4}-1=167041$, while if $a_{5}=2, \Pi=p_{9}>100110$ because $p_{8}=307$. Q.E.D.

Lemma 9. If $3 \nmid N, \omega(N)=9$, and if $p_{8}>1000, N$ is not $O P$.
Proof. Suppose N is OP. Then by Lemma 2

$$
S_{9}<\sum_{i=1}^{9} L\left(p_{i}^{b_{i}}\right)<T_{9}
$$

If $a_{i}<a\left(p_{i}\right), b_{i}=a_{i}$, and so every prime factor of $\sigma\left(p_{i}^{b_{i}}\right)$ is a factor of N except when $p_{i}=\Pi$. Hence if

$$
M=\left(\prod_{i=1}^{7} p_{i}\right)\left(\prod_{i=1 ; b_{i}<a\left(p_{i}\right)}^{7} \sigma\left(p_{i}^{b_{i}}\right)\right)
$$

we have

$$
\begin{align*}
& \omega(M)=7, \tag{4}\\
& \omega(M)=8, \quad \text { or } \tag{5}\\
& \omega(M)=9 . \tag{6}
\end{align*}
$$

Suppose (4) holds. Since $p_{8}>1000$ and $p_{9}>100110$,

$$
\begin{equation*}
S_{9}<\sum_{i=1}^{7} L\left(p_{i}^{b_{i}}\right)+\log \frac{1009}{1008}+\log \frac{100111}{100110} \text { and } \sum_{i=1}^{7} L\left(p_{i}^{b_{i}}\right)<T_{7} . \tag{7}
\end{equation*}
$$

Suppose (5) holds, and let p be the prime factor of M other than $p_{i}, 1 \leqslant i \leqslant 7$. Then

$$
\begin{align*}
& \text { if } 1000<p<100110, S_{9}<\sum_{i=1}^{7} L\left(p_{i}^{b_{i}}\right)+L\left(p^{b}\right)+\log \frac{100111}{100110} \\
& \text { if } p>100110, S_{9}<\sum_{i=1}^{7} L\left(p_{i}^{b_{i}}\right)+\log \frac{1009}{1008}+L\left(p^{b}\right) \text {, and } \tag{8}\\
& \sum_{i=1}^{7} L\left(p_{i}^{b_{i}}\right)+L\left(p^{b}\right)<T_{8}
\end{align*}
$$

where $b \leqslant a(p)$ is an allowable power of p. Suppose (6) holds. Then the two prime factors of M other than $p_{i}, 1 \leqslant i \leqslant 7$, are p_{8} and p_{9}, and

$$
\begin{equation*}
p_{8}>1000, \quad p_{9}>100110 \text { and } S_{9}<\sum_{i=1}^{9} L\left(p_{i}^{b_{i}}\right)<T_{9} \tag{9}
\end{equation*}
$$

Computer was used to find $\prod_{i=1}^{7} p_{i}^{b_{i}}$ satisfying
(A) (4) and (7),
(B) (5) and (8), or
(C) (6) and (9),
with the following results:

$$
\begin{array}{ll}
5^{12} 7^{10} 11^{8} 13^{9} 17^{8} 23^{6} 29^{6}, & 5^{12} 7^{10} 11^{8} 13^{9} 17^{8} 23^{6} 29^{4}, \\
5^{12} 7^{10} 11^{8} 13^{9} 17^{8} 23^{4} 29^{6}, & 5^{12} 7^{10} 11^{8} 13^{9} 17^{6} 23^{6} 29^{6} \\
5^{12} 7^{10} 11^{8} 13^{6} 17^{8} 23^{6} 29^{6}, & \text { or } \quad 5^{10} 7^{10} 11^{8} 13^{9} 17^{8} 23^{6} 29^{6} .
\end{array}
$$

In every case $p_{8} \geqslant 3011$ because

$$
S\left(5^{10} 7^{10} 11^{8} 13^{6} 17^{6} 23^{4} 29^{4} 3001^{1}\right)>2 .
$$

Then N is not OP because $p_{9} \geqslant \Pi>17^{6}-1$ and

$$
S(N)<\frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{23}{22} \frac{29}{28} \frac{3011}{3010} \frac{p_{9}}{p_{9}-1}<2 . \quad \text { Q.E.D. }
$$

Lemma 10. If $3 \nmid N, \omega(N)=9$, and if $p_{8}<1000, N$ is not $O P$.
Proof. Suppose N is OP. Then by Lemma 2

$$
S_{9}<\sum_{i=1}^{9} L\left(p_{i}^{b_{i}}\right)<T_{9}
$$

If

$$
M=\left(\sum_{i=1}^{8} p_{i}\right)\left(\prod_{i=1 ; b_{i}<a\left(p_{i}\right)}^{7} \sigma\left(p_{i}^{b_{i}}\right)\right)
$$

then
(10)

$$
\begin{align*}
& \omega(M)=8, \quad \text { or } \\
& \omega(M)=9 . \tag{}
\end{align*}
$$

Suppose (10) holds. Then

$$
\begin{gather*}
p_{8}<1000, \quad S_{9}<\sum_{i=1}^{8} L\left(p_{i}^{b_{i}}\right)+\log \frac{100111}{100110}, \text { and } \tag{12}\\
\sum_{i=1}^{8} L\left(p_{i}^{b_{i}}\right)<T_{8}
\end{gather*}
$$

Suppose (11) holds. Then the prime factor of M other than $p_{i}, 1 \leqslant i \leqslant 8$, is p_{9}, and

$$
\begin{equation*}
p_{8}<1000, \quad p_{9}>100110 \text { and } S_{9}<\sum_{i=1}^{9} L\left(p_{i}^{b_{i}}\right)<T_{9} \tag{13}
\end{equation*}
$$

Computer was used to find $\prod_{i=1}^{8} p_{i}^{b_{i}}$ satisfying
(A) (10) and (12), or
(B) (11) and (13),
with the following results:

$$
\begin{array}{ll}
5^{12} 7^{10} 11^{8} 13^{9} 17^{8} 19^{6} 47^{6} 233^{4}, & 5^{12} 7^{10} 11^{8} 13^{9} 17^{8} 19^{6} 47^{6} 233^{2}, \\
5^{12} 7^{10} 11^{2} 13^{9} 17^{8} 19^{6} 43^{6} 331^{4}, & 5^{2} 7^{10} 11^{8} 13^{9} 17^{8} 19^{6} 31^{6} 953^{4}, \\
5^{2} 7^{10} 11^{2} 13^{9} 17^{8} 19^{6} 31^{6} 557^{4}, & \text { or } \quad 5^{2} 7^{10} 11^{2} 13^{9} 17^{8} 19^{6} 31^{6} 557^{2} .
\end{array}
$$

Then N is not OP because in every case $p_{9}=\Pi \geqslant 2 \cdot 17^{8}-1$ and $S(N)<2$. Q.E.D.
Lemmas 9 and 10 prove our theorem.
Computer (PDP 11 at the University of Toledo) program run time for Lemmas 9 and 10 was three minutes.

I would like to thank Professor J. Chidambaraswamy for his help in preparing this paper. Also, I would like to thank the referee who suggested the use of [2], which cut down the computer time.

Department of Mathematics

University of Toledo
Toledo, Ohio 43606

1. C. POMERANCE, "Odd perfect numbers are divisible by at least seven distinct primes," Acta Arith., v. 25, 1973/74, pp. 265-300. MR 49 \#4925.
2. C. POMERANCE, "The second largest prime factor of an odd perfect number," Math. Comp., v. 29, 1975, pp. 914-921. MR 51 \#8018.
3. P. HAGIS, JR., "Every odd perfect number has at least eight prime factors," Notices Amer. Math. Soc., v. 22, 1975, p. A-60. Abstract \#720-10-14.
4. P. HAGIS, JR. \& W. L. McDANIEL, "On the largest prime divisor of an odd perfect number. II," Math. Comp., v. 29. 1975, pp. 922-924. MR 51 \#8021.
5. M. BUXTON \& S. ELMORE, " An extension of lower bounds for odd perfect numbers," Notices Amer. Math. Soc., v. 23, 1976, p. A-55. Abstract \#731-10-40.
6. H.-J. KANOLD, "Folgerungen aus dem Vorkommen einer Gauss'schen Primzahl in der Primfaktorenzerlegung einer ungeraden Vollkommenen Zahl," J. Reine Angew. Math., v. 186, 1944, pp. 25-29. MR 6, 255.
