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Odd Perfect Numbers Not Divisible by 3 
Are Divisible by at Least Ten Distinct Primes 

By Masao Kishore 

Abstract. Hagis and McDaniel have shown that the largest prime factor of an 

odd perfect number N is at least 1001 11, and Pomerance has shown that the second 

largest prime factor is at least 139. Using these facts together with the method we 

develop, we show that if 3 f N, N is divisible by at least ten distinct primes. 

1. Introduction. A positive integer N is called perfect if u(N) = 2M, u(N) being 
the sum of positive divisors of N. No odd perfect (OP) numbers are known; however, 
it has been proved that if N is OP and w(N) denotes the number of distinct prime 
factors of N, then co(N) > 5 by Sylvester (1888), Dickson (1913) and Kanold (1949); 

co(N) > 6 by Gradstein (1925), Kuihnel (1949) and Weber (1951); (N) > 7 by 
Pomerance (1972, [1]) and Robbins (1972); co(N) > 8 by Hagis (1975, [3]); and that 
if N is OP and 30N, then w(N) > 8 by Sylvester (1888), and (N) > 9 by Kanold 
(1949, [6]). Also, it has been proved that if Nis OP, then N > 10200 by Buxton and 
Elmore (1976, [5]), the largest prime factor of N> 100110 by Hagis and McDaniel 
(1975, [4]), and the second largest prime factor of N > 139 by Pomerance (1975, 

[2]). 
In this paper we prove 
THEOREM. If N is OP and 3tN, @(N) > 10. 

2. Preliminary results. Throughout this paper let 

r 
No= flpi', 

i=1 

where p1 < P2 < < Pr are odd primes and a1, . ar are positive integers. We 
call Pii a component of N and write VU (N) for aj. 

Euler proved that if N is OP, then for some j, p1 a, 1 (4) and for i # I, 
a1 0 (2). p1 is called the special prime denoted by H1. 

LEMMA 1. Suppose N is OP, 3 N, and pa is a component of N. If p 2 (3), 
then p # H, and if p 1 (3), then a # 2 (3). 

Proof. If p 2 (3) and p = H', then a(pa) 0 (3) because a is odd, while if p 
1 (3) and a 2 (3), then a(pa) 0 (3), both of which contradict the fact that 3 

N. Q.E.D. 
From Euler's Theorem and Lemma 1 we have 

COROLLARY 1. Suppose N is OP, 3 Jr N, and pa is a component of N. If p 
1 (4) andp 1 (3), then a = 1, 4,6,9, 10, 12,... ; if p 1 (4) andp -2 (3), 
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then a = 2, 4, 6, 8, 10, 12,... ;if p # 1 (4) and p 1 (3), then a = 4, 6, 10, 12, 
if p # 1 (4) and p=2 (3), then a = 2, 4, 6, 8, 10, 12,. 
We are interested in finding pi'ais for which 

U S(pi') = 2, where S(pa) = (pa)Ipa. 
1=1 

Since the accuracy of the computer is limited, we use the inequality 
r a 

(1) 0.693147180 < log 2 = log S(pi') < 0.693147181. 
i=1 

With nine-digit figures we have sufficient accuracy, and with log we can easily control 
computational errors involved. 

Suppose N is OP, 3 t N, and pa is a component of N. We define 

a(p) = minimum {blb > 1 is an allowable power of p as determined 

by Corollary 1 and pb+1 > 109} 
and 

L~pa) [109 log S(pa)] 10-9 if a < a(p) 

t 109 log P l10-9 if a > a(p), 

where [ ] is the greatest integer function. 
We note that if p and q are odd primes with p < q, then for any positive integers 

a and b 

S(qa) < q < p + S(pb)? 

and so L(qa) 6 L(pb). 

LEMMA 2. Suppose 

N | Pi 
1=1 

is OP and 3 t N. Then 
r b. 

(2) Sr < E L(pi i) < Tr, 

where Sr = 0.693147180 - r 10-9, Tr = 0.693147181 + r 10-9, bi = ai if ai < 

a(pi), and b1 = a(pi) if a1 > a(pi). 
Proof. Since N is OP, (1) holds. Suppose pa is a component of N. If a < a(p), 

then 

log S(pa) - L(p)I < 10-9. 
If a > a(p), then 

10-9 > log P -L(pa) > log S(pa) - L(pa(P)) 
p - 

a 1 1 00 

p a0 - _ __ _ _ 
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and so 

Ilog S~pa) Lpa (p)) I < 10-9. 

Hence, 

(3) |log S(pi) L(p'i) < r 10-9, 

and (2) follows from (1) and (3). Q.E.D. 
We also need the following lemmas, which were proved in [1, pp. 269-271]: 
LEMMA 3. If q is a prime for which q - 1 is a power of 2, N is OP, and if pa 

is a component of N, then 

Vq(a +1) if p 1(q), 

Vq(U(Pa)) = Vq(p + 1) + Vq(a + 1) if p- 1 (q) and p=, 

0 otherwise. 

LEMMA 4. If N is Op, pa is a component of N, and if q is a prime and qb la + 1, 

then N is divisible by at least b distinct primes 1 (q) other than p. 

LEMMA 5. If n is OP, 17a is a component of N, and if 17a -t1 + 1, then N is 

divisible by at least two primes 1 (17). 

3. Proof of the Theorem. In this section, we shall prove that if 3 t N and 
co(N) = 9, then N is not OP. 

LEMMA6. If Nis OP, 3{N, and if w(N) = 9, then 

P1 =, P2 =7, p3 = ll, p4 = 13,p5 619, p6 ?23, p7 ?53, 

p8 > 139 and p9 > 100110. 

Proof. By [4] p9 > 100110, and by [2] P8 > 139. Others follow from 

5 7 11 17 19 23 29 139 100111< 2 
4 6 10 16 18 22 28 138 100110 

5 7 11 13 23 29 31 139 100111 < 2 
4 6 10 12 22 28 30 138 106110 

5 7 11 13 17 29 31 139 100111 <2 
4 6 10 12 16 28 30 138 100110 

and 
5 7 11 13 17 19 59 139 100111 <2 QED 
4 6 10 12 16 18 58 138 100110i*<2 QED 

LEMMA 7. p5 = 17 in Lemma 6. 

Proof. Suppose p5 = 19. Then P6 = 23, p7 = 29 andp8 = 139 because 

57 11 13 192331 139 100111 <2 
4 6 10 12 18 22 30 138 100110 

and 
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5 7 11 13 19 23 29 149 100111 
4 6 10 12 18 22 28 148 100110 

Hence 

N2a17a21la313a419a523 a629a7 S398 ag 

Since 

- 7 S(112)13 19 23 29 139 100111 < 2 
4 6 12 18 22 28 138 100110 

and 

- 
7 1 S(13') 9 23 29 139 100111 < 2 4 6 10 18 22 28 138 100110 

a3 # 2 and a4 # 1. Also, a2, a4, a5, a8 # 2 by Corollary 1. Since every odd prime 
factor of a(pi') is a factor of N, al, a6, a7 # 2 and al, a2 # 4 because 31 ja(52), 
711 a(54), 28011 a(74), 791 a(232) and 671 a(292). Hence for 1 6 i ? 2, ai > 6 and 
for 3 6 i 6 8, ai > 4. Then N is not OP because 

fj) I S(pai) > 2. Q.E.D. 
i=1 

LEMMA8. 17 a5I+ and f > 100110 inLemma 6. 
a5 Proof Suppose 17 5tH + 1. Sinceppi 1 (17) for 1 ?i?7,p8 p= 9 

1 (17) by Lemma 5. If 1721 a(jp) forj = 8 or 9, then by Lemma 3, 172 la, + 1, 
and by Lemma 4 N would be divisible by at least two primes 1 (17) other than p,. 
Hence 172 { a(Pj). Since 17ta(pa') for 1 6 i 6 7, we conclude that a5 = 2, 
17la(pa8) and 17 l a(p9). ThenP8 = a(172) = 307, and for j = 8, 9, a, = 16, pi 0 
HI, Sta(p,), and so for some 1 ? i 6 7, 5 1 a(pii). By Lemma 3 and Corollary 1, pi 
- 11, 31, or 41, and a(p~) Ia(pai) because 5 ai + 1; however, 3221 Ia(l14), 17351 I 
a(314), 579281 Ia(414), and none of these primes 1 (17). Hence pi # 11, 31, 41, 
a contradiction, and 17 a5 In + 1. 

If a5 > 4, II > 2 * 174 - 1 = 167041, while if a5 = 2, II = p9 > 100110 be- 
cause P8 = 307. Q.E.D. 

LEMMA 9. If 3 {N, (N) = 9, and if P8 > 1000, N is not OP. 
Proof Suppose N is OP. Then by Lemma 2 

9 b. 
S9 < L(pi ) < T7'- 

i=1 

If a < a(pi), bi = ai, and so every prime factor of a(p" i) is a factor of N except 
when pi = H. Hence if 

M = (nPi ) H abibi, 
= 1 Y= 1;bi<a(pi) 

we have 

(4) w(M) =7, 

(5) @(M)= 8, or 

(6) w(M) =9. 
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Suppose (4) holds. Since P8 > 1000 and p9 > 1001 10, 

7 b- 1009 100111 7 b 
(7) S < L(p + log + log 10011 and EL(p1 1) < T7. 

i=1~~~~~~~~~~~~~j 
Suppose (5) holds, and let p be the prime factor of M other than pi, 1 < i 6 7. Then 

<7 pb)L. b) lg100111 
if 1000 < p < 100110,S9 100110, 

7 b. 1009 
(8) if p > 100110, S9 < L(p 1) + log 1008 + L(pb), and 

7 b. 
EL(P i)+ Vb) < T8 < 

1=1 

where b < a(p) is an allowable power of p. Suppose (6) holds. Then the two prime 
factors of M other than pi, 1 1 i ? 7, are P8 and pg, and 

9 b 
(9) p8 >l1000, p9 > 100110 and S < L( 

i=> 

Computer was used to find fl bi satisfying 
(A) (4) and (7), 
(B) (5) and (8), or 

(C) (6) and (9), 
with the following results: 

512710118139178236296 512710118139178236294, 

512710118139178234296 512710118139176236296 

512710118136178236296 or 510710118139178236296 

In every case P8 > 3011 because 

S(5107101181361762342943001 ) > 2. 

Then N is not OP because p9 > H1 > 176 - 1 and 

S(NV) < 5 7 11 13 17 23 2983011 P- < 2 QED 
4()<6 10 12 16 22 283010 p9 -12 i. 

LEMMA 10. If 3 EN, &(N) = 9, and if P8 < 1000, N is not OP. 

Proof Suppose N is OP. Then by Lemma 2 
9 b. 

S9< LL(pi )<T9. 
i=1 

If 

h8 e 
= i= 1;bi<a (Pi) 

then 



ODD PERFECT NUMBERS 279 

(10) w(M) = 8, or 

(11)' @(M) = 9. 

Suppose (10) holds. Then 
8 b. 100111 

P8 < 1000, S9 < EL(pii) + log 1-0 1, and 
i=11010 

(12) 
8 b 
EL(pi i) < T8. 

i=1 

Suppose (11) holds. Then the prime factor of M other than pi, 1 6 i 6 8, is pg, and 

(13) P8 < 1000, p9 > 100110 and S9 < L(pii)< T9. 
1=1 

Computer was used to find lO bpi satisfying 

(A) (10) and (12), oi 

(B) ( 1) and (13), 
with the following results: 

5127101181391781964762334 5127101181391781964762332 

5127101121391781964363314 527101181391781963169534 

527101121391781963165574 or 527101121391781963165572 

Then N is not OP because in every case p9 = HI > 2 * 178 - 1 and S(N) < 2. Q.E.D. 
Lemmas 9 and 10 prove our theorem. 
Computer (PDP 11 at the University of Toledo) program run time for Lemmas 

9 and 10 was three minutes. 
I would like to thank Professor J. Chidambaraswamy for his help in preparing 

this paper. Also, I would like to thank the referee who suggested the use of [2], 
which cut down the computer time. 
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